Esercizi su massimi e minimi

1. Studiare massimi e minimi relativi della funzione \(f : \mathbb{R}^2 \to \mathbb{R} \) definita ponendo
 \[\forall (x, y) \in \mathbb{R}^2 : f(x, y) = x^2 + y^2 + xy + x. \]

 Risoluzione La funzione \(f \) è derivabile in tutto \(\mathbb{R}^2 \) e per ogni \((x, y)\) \in \(\mathbb{R}^2 \) si ha
 \[
 \frac{\partial f}{\partial x}(x, y) = 2x + y + 1 \\
 \frac{\partial f}{\partial y}(x, y) = 2y + x.
 \]

 Cerco i punti stazionari di \(f \)
 \[
 \left\{ \begin{array}{l}
 \frac{\partial f}{\partial x}(x, y) = 0 \\
 \frac{\partial f}{\partial y}(x, y) = 0
 \end{array} \right.
 \]

 ovvero risolvo il sistema
 \[
 \left\{ \begin{array}{l}
 2x + y + 1 = 0 \\
 2y + x = 0
 \end{array} \right.
 \]

 la cui unica soluzione è data dalla coppia \((\bar{x}, \bar{y}) = \left(\frac{1}{3}, -\frac{2}{3} \right)\), cioè dal punto \(P \left(\frac{1}{3}, -\frac{2}{3} \right) \). Studiamo ora la natura di tale punto. Anzitutto la funzione \(f \) è derivabile 2 volte in tutto \(\mathbb{R}^2 \). Calcoliamo per ogni \((x, y)\) \in \(\mathbb{R}^2 \)
 \[
 \frac{\partial^2 f}{\partial x^2}(x, y) = 2, \quad \frac{\partial^2 f}{\partial y^2}(x, y) = 2, \quad \frac{\partial^2 f}{\partial x \partial y}(x, y) = 1, \quad \frac{\partial^2 f}{\partial y \partial x}(x, y) = 1.
 \]

 Quindi la matrice Hessiana della \(f \) nel punto \(P \) è data da
 \[
 H_f(P) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.
 \]

 Pertanto, essendo \(\det H_f(P) > 0 \) e \(\frac{\partial^2 f}{\partial x^2}(P) = \frac{\partial^2 f}{\partial y^2}(P) > 0 \), si ha che \(P \) è un punto di minimo relativo per \(f \).

2. Studiare massimi e minimi relativi della funzione \(f : \mathbb{R}^3 \to \mathbb{R} \) definita ponendo
 \[\forall (x, y, z) \in \mathbb{R}^3 : f(x, y, z) = x^2 z + y z + x y. \]
Risoluzione La funzione f è derivabile in tutto \mathbb{R}^3 e per ogni $(x, y, z) \in \mathbb{R}^3$ si ha

$$
\frac{\partial f}{\partial x}(x, y, z) = 2xz + y \\
\frac{\partial f}{\partial y}(x, y, z) = z + x \\
\frac{\partial f}{\partial z}(x, y, z) = x^2 + y.
$$

Cerco i punti stazionari di f

$$
\begin{align*}
\frac{\partial f}{\partial x}(x, y, z) &= 0 \\
\frac{\partial f}{\partial y}(x, y, z) &= 0 \\
\frac{\partial f}{\partial z}(x, y, z) &= 0
\end{align*}
$$

ovvero risolvo il sistema

$$
\begin{align*}
2xz + y &= 0 \\
z + x &= 0 \\
x^2 + y &= 0
\end{align*}
$$

la cui unica soluzione è data dalla terna $(x, y, z) = (0, 0, 0)$, cioè dal punto $P(0, 0, 0)$. Studiamo ora la natura di tale punto. Anzitutto la funzione f è derivabile 2 volte in tutto \mathbb{R}^3. Calcoliamo per ogni $(x, y, z) \in \mathbb{R}^3$

$$
\frac{\partial^2 f}{\partial x^2}(x, y, z) = 2z, \quad \frac{\partial^2 f}{\partial y^2}(x, y, z) = 0, \quad \frac{\partial^2 f}{\partial z^2}(x, y, z) = 0,
$$

$$
\frac{\partial^2 f}{\partial x \partial y}(x, y, z) = \frac{\partial^2 f}{\partial y \partial x}(x, y, z) = 1,
$$

$$
\frac{\partial^2 f}{\partial x \partial z}(x, y, z) = 0, \quad \frac{\partial^2 f}{\partial z \partial x}(x, y, z) = 2x,
$$

$$
\frac{\partial^2 f}{\partial y \partial z}(x, y, z) = 0, \quad \frac{\partial^2 f}{\partial z \partial y}(x, y, z) = 1.
$$

Quindi la matrice Hessiana della f nel punto P è data da

$$
H_f(P) = \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}.
$$

Poiché $\det H_f(P) = 0$, per studiare la natura del punto P devo procedere per un’altra strada. In un intorno sferico di $O(0, 0, 0)$, se per esempio considero dei punti $P(x, y, z)$ con $x > 0$, $y > 0$, $z > 0$, avrò che $f(x, y, z) > 0 = f(0, 0, 0)$, invece per punti $P(x, y, z)$ con $x < 0$, $y > 0$, $z < 0$, avrò che $f(x, y, z) < 0 = f(0, 0, 0)$. Pertanto $O(0, 0, 0)$ è un punto di sella.

3. Studiare massimi e minimi assoluti della funzione $f(x, y) = (x^2 - y^2)(x - 2)$ nel triangolo A di vertici $O(0, 0)$, $P(2, 2)$ e $Q(2, -2)$.

2
Risoluzione La funzione f è derivabile in tutto \mathbb{R}^2 e per ogni $(x, y) \in \mathbb{R}^2$ si ha

$$\frac{\partial f}{\partial x} (x, y) = 2x(x - 2) + x^2 - y^2,$$

$$\frac{\partial f}{\partial y} (x, y) = -2y(x - 2).$$

Cerco i punti stazionari di f

$$\begin{cases} \frac{\partial f}{\partial x} (x, y) = 0 \\ \frac{\partial f}{\partial y} (x, y) = 0 \end{cases}$$

ovvero risolvo il sistema

$$\begin{cases} 2x(x - 2) + x^2 - y^2 = 0 \\ -2y(x - 2) = 0 \end{cases}$$

che equivale a risolvere due sistemi:

$$(S_1) \begin{cases} x = \frac{2}{3} \\ x^2 = y^2 \end{cases} \text{ e } (S_2) \begin{cases} y = 0 \\ 3x^2 - 4x = 0 \end{cases}.$$

Il sistema (S_1) mi dà soluzioni non interne ad A. Invece il sistema (S_2) si sdoppia in altri due sistemi:

$$(S'_2) \begin{cases} y = 0 \\ x = 0 \end{cases} \text{ e } (S''_2) \begin{cases} y = 0 \\ x = \frac{4}{3} \end{cases}.$$

Il sistema (S'_2) mi dà una soluzione non interna ad A. Invece il sistema (S''_2) mi dà la soluzione $P_0 \left(\frac{4}{3}, 0 \right)$. Calcolo $f(P_0) = -\frac{32}{27}$. Considero ora

$$Fr(A) = A_1 \cup A_2 \cup A_3$$

ove

$$A_1 = \{(x, y) \in \mathbb{R}^2 \mid 0 \leq x \leq 2, y = x\},$$

$$A_2 = \{(x, y) \in \mathbb{R}^2 \mid 0 \leq x \leq 2, y = -x\},$$

$$A_3 = \{(x, y) \in \mathbb{R}^2 \mid x = 2, -2 \leq y \leq 2\}.$$

Si vede che $f|_{A_1} \equiv 0$, $f|_{A_2} \equiv 0$, $f|_{A_3} \equiv 0$. Quindi P_0 è un punto di minimo assoluto per f in A e $f(P_0) = -\frac{32}{27}$ è il minimo assoluto per f in A e tutti i punti di $Fr(A)$ sono punti di massimo assoluto per f in A e 0 è il massimo assoluto per f in A.

4. Studiare massimi e minimi relativi ed assoluti della funzione $f(x, y) = \sqrt{x^2 + y^2 + y^2 - 1}$ nell’insieme $A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 9\}$.

Risoluzione La funzione f è derivabile in tutto $\mathbb{R}^2\setminus \{(0, 0)\}$ e per ogni $(x, y) \in \mathbb{R}^2\setminus \{(0, 0)\}$ si ha

$$\frac{\partial f}{\partial x} (x, y) = \frac{2x}{2 \sqrt{x^2 + y^2}}$$

$$\frac{\partial f}{\partial y} (x, y) = \frac{2y}{2 \sqrt{x^2 + y^2}} + 2y.$$
Cerco i punti stazionari di \(f \)

\[
\begin{align*}
\frac{\partial f}{\partial x} (x, y) &= 0 \\
\frac{\partial f}{\partial y} (x, y) &= 0
\end{align*}
\]

ovvero risolvo il sistema

\[
\begin{align*}
\frac{x}{\sqrt{x^2 + y^2}} &= 0 \\
\frac{y}{\sqrt{x^2 + y^2}} + 2y &= 0
\end{align*}
\]

che non dà soluzioni. Vediamo se \(f \) è derivabile in \((0, 0)\). Calcoliamo

\[
\begin{align*}
\lim_{t \to 0} \frac{f(t, 0) - f(0, 0)}{t} &= \lim_{t \to 0} \frac{\sqrt{1 + 1}}{t} = \lim_{t \to 0} \frac{|t|}{t} \\
\lim_{t \to 0} \frac{f(0, t) - f(0, 0)}{t} &= \lim_{t \to 0} \frac{\sqrt{1 + t^2} - 1 + 1}{t} = \lim_{t \to 0} \left(\frac{|t|}{t} + t \right).
\end{align*}
\]

Poiché non esiste \(\lim_{t \to 0} \frac{|t|}{t} \), allora \(f \) non è derivabile in \((0, 0)\). Ma \(f(0, 0) = -1 \). Ora vediamo cosa succede sulla frontiera di \(A \), cioè su

\[
Fr (A) : \begin{cases}
 x = 3 \cos t \\
 y = 3 \sin t \\
 t \in [0, 2\pi].
\end{cases}
\]

Per ogni \((x, y) \in Fr (A)\)

\[
f|_{Fr(A)}(x, y) = f(3 \cos t, 3 \sin t) = F(t),
\]

cioè considero la funzione \(F : [0, 2\pi] \to \mathbb{R} \) così definita

\[
\forall t \in [0, 2\pi] : F(t) = f(3 \cos t, 3 \sin t) = 2 + 9 \sin^2 t.
\]

Agli estremi: \(F(0) = F(2\pi) = 2 \). Ora cerchiamo i punti di massimo e di minimo della funzione \(F \). Per ogni \(t \in [0, 2\pi] \) la funzione \(F \) è derivabile e si ha

\[
F'(t) = 18 \sin t \cos t.
\]

Quindi

\[
F'(t) = 0 \iff t = \pi \text{ oppure } t = \frac{\pi}{2} \text{ oppure } t = \frac{3}{2} \pi.
\]

In tali punti: \(F(\pi) = 2, F\left(\frac{\pi}{2}\right) = 11 \) e \(F\left(\frac{3}{2}\pi\right) = 11 \). Pertanto in corrispondenza di questi punti ho \(P_0 (0, 0) \) con \(f(P_0) = -1 \), \(P_1 (3, 0) \) con \(f(P_1) = 2, P_2 (-3, 0) \) con \(f(P_2) = 2, P_3 (0, 3) \) con \(f(P_3) = 11 \) e \(P_4 (0, -3) \) con \(f(P_4) = 11 \). Quindi \(P_3 \) e \(P_4 \) sono punti di massimo assoluto per \(f \), mentre \(P_0 \) è punto di minimo assoluto per \(f \).

5. **Studiare massimi e minimi relativi ed assoluti della funzione** \(f(x, y, z) = x^2 + y^2 + z^2 - 2x - 1 \) **nell’insieme** \(A = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + 2z^2 - 2 \leq 0 \right\} \).
Risoluzione La funzione f è derivabile in tutto \mathbb{R}^3 e per ogni $(x, y, z) \in \mathbb{R}^3$ si ha

$$
\begin{align*}
\frac{\partial f}{\partial x} (x, y, z) &= 2x - 2 \\
\frac{\partial f}{\partial y} (x, y, z) &= 2y \\
\frac{\partial f}{\partial z} (x, y, z) &= 2z.
\end{align*}
$$

Cerco i punti stazionari di f

$$
\begin{align*}
\frac{\partial f}{\partial x} (x, y, z) &= 0 \\
\frac{\partial f}{\partial y} (x, y, z) &= 0 \\
\frac{\partial f}{\partial z} (x, y, z) &= 0
\end{align*}
$$

ovvero risolvo il sistema

$$
\begin{align*}
2x - 2 &= 0 \\
2y &= 0 \\
2z &= 0
\end{align*}
$$

la cui unica soluzione è data dalla terna $(\bar{x}, \bar{y}, \bar{z}) = (1, 0, 0)$, cioè dal punto $P(1, 0, 0)$ che è interno ad A poiché le sue coordinate verificano $x^2 + y^2 + 2z^2 - 2 < 0$. Studiamo ora la natura di tale punto. Anzitutto la funzione f è derivabile 2 volte in tutto \mathbb{R}^3. Inoltre si ha

$$
\begin{align*}
\frac{\partial^2 f}{\partial x^2} (P) &= 2, \\
\frac{\partial^2 f}{\partial y^2} (P) &= 2, \\
\frac{\partial^2 f}{\partial z^2} (P) &= 2,
\end{align*}
$$

$$
\begin{align*}
\frac{\partial^2 f}{\partial x \partial y} (P) &= 0, \\
\frac{\partial^2 f}{\partial x \partial z} (P) &= 0, \\
\frac{\partial^2 f}{\partial y \partial z} (P) &= 0.
\end{align*}
$$

Quindi la matrice Hessiana della f nel punto P è data da

$$
H_f(P) = \begin{pmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{pmatrix}.
$$

Pertanto, essendo $\det H_f(P) = 8 > 0$, $H_{2,f} (P) = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4 > 0$ e

$$
\frac{\partial^2 f}{\partial x^2} (P) = 2 > 0,$
$$

si ha che P è un punto di minimo relativo per f. Inoltre

$f(P) = -2$ è un minimo relativo per f. Ora studiamo i massimi e i minimi sulla frontiera di A, cioè su

$$
Fr (A) = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + 2z^2 - 2 = 0\}.
$$

Cercare massimi e minimi su $Fr(A)$ equivale a cercare massimi e minimi vincolati della funzione f di vincolo $g(x, y, z) = x^2 + y^2 + 2z^2 - 2$. Pertanto devo cercare i massimi e minimi relativi della funzione

$$F(x, y, z, \lambda) = x^2 + y^2 + z^2 - 2x - 1 + \lambda (x^2 + y^2 + 2z^2 - 2).$$

I punti stazionari di F si ottengono imponendo che

$$\begin{cases}
\frac{\partial F}{\partial x} = 0 \\
\frac{\partial F}{\partial y} = 0 \\
\frac{\partial F}{\partial z} = 0 \\
\frac{\partial F}{\partial \lambda} = 0
\end{cases}$$

ovvero che

$$\begin{cases}
2x - 2 + 2\lambda x = 0 \\
2y + 2\lambda y = 0 \\
2z + 4\lambda z = 0 \\
x^2 + y^2 + 2z^2 - 2 = 0
\end{cases}.$$

Tale sistema equivale a 3 sistemi:

$$(S_1) \begin{cases}
y = 0 \\
z = 0 \\
x = \sqrt{2} \\
\sqrt{2}(1 + \lambda) = 1
\end{cases},
(S_2) \begin{cases}
y = 0 \\
z = 0 \\
x = -\sqrt{2} \\
-\sqrt{2}(1 + \lambda) = 1
\end{cases} e
(S_3) \begin{cases}
y = 0 \\
x = 2 \\
\lambda = -\frac{1}{2} \\
4 + 2z^2 - 2 = 0
\end{cases}.$$

I primi 2 sistemi ci danno come soluzioni i punti $P_1 (\sqrt{2}, 0, 0)$ e $P_2 (-\sqrt{2}, 0, 0)$, mentre il terzo non ha soluzioni. Per tali punti $f(P_1) = 1 - 2\sqrt{2}$ e $f(P_2) = 1 + 2\sqrt{2}$. Quindi P è punto di minimo assoluto per f, mentre P_2 è punto di massimo assoluto per f.

6